72

Investigating Different Geo Priors for Image Classification

Main:4 Pages
Bibliography:1 Pages
4 Tables
Abstract

Species distribution models encode spatial patterns of species occurrence making them effective priors for vision-based species classification when location information is available. In this study, we evaluate various SINR (Spatial Implicit Neural Representations) models as a geographical prior for visual classification of species from iNaturalist observations. We explore the impact of different model configurations and adjust how we handle predictions for species not included in Geo Prior training. Our analysis reveals factors that contribute to the effectiveness of these models as Geo Priors, factors that may differ from making accurate range maps.

View on arXiv
Comments on this paper