ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.16140
44
0

High-Precision Mixed Feature Fusion Network Using Hypergraph Computation for Cervical Abnormal Cell Detection

22 August 2025
Jincheng Li
Danyang Dong
Menglin Zheng
Jingbo Zhang
Yueqin Hang
Lichi Zhang
Lili Zhao
ArXiv (abs)PDFHTML
Main:8 Pages
3 Figures
Bibliography:2 Pages
2 Tables
Abstract

Automatic detection of abnormal cervical cells from Thinprep Cytologic Test (TCT) images is a critical component in the development of intelligent computer-aided diagnostic systems. However, existing algorithms typically fail to effectively model the correlations of visual features, while these spatial correlation features actually contain critical diagnostic information. Furthermore, no detection algorithm has the ability to integrate inter-correlation features of cells with intra-discriminative features of cells, lacking a fusion strategy for the end-to-end detection model. In this work, we propose a hypergraph-based cell detection network that effectively fuses different types of features, combining spatial correlation features and deep discriminative features. Specifically, we use a Multi-level Fusion Sub-network (MLF-SNet) to enhance feature extractioncapabilities. Then we introduce a Cross-level Feature Fusion Strategy with Hypergraph Computation module (CLFFS-HC), to integrate mixed features. Finally, we conducted experiments on three publicly available datasets, and the results demonstrate that our method significantly improves the performance of cervical abnormal cell detection.

View on arXiv
Comments on this paper