ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.16994
36
0

GRADE: Generating multi-hop QA and fine-gRAined Difficulty matrix for RAG Evaluation

23 August 2025
Jeongsoo Lee
Daeyong Kwon
Kyohoon Jin
ArXiv (abs)PDFHTML
Main:9 Pages
4 Figures
Bibliography:2 Pages
6 Tables
Appendix:4 Pages
Abstract

Retrieval-Augmented Generation (RAG) systems are widely adopted in knowledge-intensive NLP tasks, but current evaluations often overlook the structural complexity and multi-step reasoning required in real-world scenarios. These benchmarks overlook key factors such as the interaction between retrieval difficulty and reasoning depth. To address this gap, we propose \textsc{GRADE}, a novel evaluation framework that models task difficulty along two orthogonal dimensions: (1) reasoning depth, defined by the number of inference steps (hops), and (2) semantic distance between the query and its supporting evidence. We construct a synthetic multi-hop QA dataset from factual news articles by extracting knowledge graphs and augmenting them through semantic clustering to recover missing links, allowing us to generate diverse and difficulty-controlled queries. Central to our framework is a 2D difficulty matrix that combines generator-side and retriever-side difficulty. Experiments across multiple domains and models show that error rates strongly correlate with our difficulty measures, validating their diagnostic utility. \textsc{GRADE} enables fine-grained analysis of RAG performance and provides a scalable foundation for evaluating and improving multi-hop reasoning in real-world applications.

View on arXiv
Comments on this paper