ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.17029
116
0

A Novel Local Focusing Mechanism for Deepfake Detection Generalization

23 August 2025
Mingliang Li
Lin Yuanbo Wu
Changhong Liu
Hanxi Li
ArXiv (abs)PDFHTMLGithub (1★)
Main:8 Pages
3 Figures
Bibliography:5 Pages
10 Tables
Appendix:3 Pages
Abstract

The rapid advancement of deepfake generation techniques has intensified the need for robust and generalizable detection methods. Existing approaches based on reconstruction learning typically leverage deep convolutional networks to extract differential features. However, these methods show poor generalization across object categories (e.g., from faces to cars) and generation domains (e.g., from GANs to Stable Diffusion), due to intrinsic limitations of deep CNNs. First, models trained on a specific category tend to overfit to semantic feature distributions, making them less transferable to other categories, especially as network depth increases. Second, Global Average Pooling (GAP) compresses critical local forgery cues into a single vector, thus discarding discriminative patterns vital for real-fake classification. To address these issues, we propose a novel Local Focus Mechanism (LFM) that explicitly attends to discriminative local features for differentiating fake from real images. LFM integrates a Salience Network (SNet) with a task-specific Top-K Pooling (TKP) module to select the K most informative local patterns. To mitigate potential overfitting introduced by Top-K pooling, we introduce two regularization techniques: Rank-Based Linear Dropout (RBLD) and Random-K Sampling (RKS), which enhance the model's robustness. LFM achieves a 3.7 improvement in accuracy and a 2.8 increase in average precision over the state-of-the-art Neighboring Pixel Relationships (NPR) method, while maintaining exceptional efficiency at 1789 FPS on a single NVIDIA A6000 GPU. Our approach sets a new benchmark for cross-domain deepfake detection. The source code are available inthis https URL

View on arXiv
Comments on this paper