100

Quantifying Language Disparities in Multilingual Large Language Models

Main:5 Pages
9 Figures
Bibliography:3 Pages
15 Tables
Appendix:8 Pages
Abstract

Results reported in large-scale multilingual evaluations are often fragmented and confounded by factors such as target languages, differences in experimental setups, and model choices. We propose a framework that disentangles these confounding variables and introduces three interpretable metrics--the performance realisation ratio, its coefficient of variation, and language potential--enabling a finer-grained and more insightful quantification of actual performance disparities across both (i) models and (ii) languages. Through a case study of 13 model variants on 11 multilingual datasets, we demonstrate that our framework provides a more reliable measurement of model performance and language disparities, particularly for low-resource languages, which have so far proven challenging to evaluate. Importantly, our results reveal that higher overall model performance does not necessarily imply greater fairness across languages.

View on arXiv
Comments on this paper