ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.17218
28
1

GPG-HT: Generalized Policy Gradient with History-Aware Decision Transformer for Probabilistic Path Planning

24 August 2025
Xing Wei
Yuqi Ouyang
ArXiv (abs)PDFHTML
Main:12 Pages
3 Figures
Bibliography:2 Pages
2 Tables
Abstract

With the rapidly increased number of vehicles in urban areas, existing road infrastructure struggles to accommodate modern traffic demands, resulting in the issue of congestion. This highlights the importance of efficient path planning strategies. However, most recent navigation models focus solely on deterministic or time-dependent networks, while overlooking the correlations and the stochastic nature of traffic flows. In this work, we address the reliable shortest path problem within stochastic transportation networks under certain dependencies. We propose a path planning solution that integrates the decision Transformer with the Generalized Policy Gradient (GPG) framework. Based on the decision Transformer's capability to model long-term dependencies, our proposed solution improves the accuracy and stability of path decisions. Experimental results on the Sioux Falls Network (SFN) demonstrate that our approach outperforms previous baselines in terms of on-time arrival probability, providing more accurate path planning solutions.

View on arXiv
Comments on this paper