ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.18095
100
0

Incorporating Pre-trained Diffusion Models in Solving the Schrödinger Bridge Problem

25 August 2025
Zhicong Tang
Tiankai Hang
Shuyang Gu
Dong Chen
Baining Guo
    DiffMOT
ArXiv (abs)PDFHTML
Main:7 Pages
9 Figures
Bibliography:1 Pages
8 Tables
Appendix:13 Pages
Abstract

This paper aims to unify Score-based Generative Models (SGMs), also known as Diffusion models, and the Schrödinger Bridge (SB) problem through three reparameterization techniques: Iterative Proportional Mean-Matching (IPMM), Iterative Proportional Terminus-Matching (IPTM), and Iterative Proportional Flow-Matching (IPFM). These techniques significantly accelerate and stabilize the training of SB-based models. Furthermore, the paper introduces novel initialization strategies that use pre-trained SGMs to effectively train SB-based models. By using SGMs as initialization, we leverage the advantages of both SB-based models and SGMs, ensuring efficient training of SB-based models and further improving the performance of SGMs. Extensive experiments demonstrate the significant effectiveness and improvements of the proposed methods. We believe this work contributes to and paves the way for future research on generative models.

View on arXiv
Comments on this paper