ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.18317
80
1

Does Calibration Affect Human Actions?

23 August 2025
Meir Nizri
A. Azaria
Chirag Gupta
Noam Hazon
    HAI
ArXiv (abs)PDFHTML
Main:9 Pages
9 Figures
Bibliography:2 Pages
2 Tables
Appendix:3 Pages
Abstract

Calibration has been proposed as a way to enhance the reliability and adoption of machine learning classifiers. We study a particular aspect of this proposal: how does calibrating a classification model affect the decisions made by non-expert humans consuming the model's predictions? We perform a Human-Computer-Interaction (HCI) experiment to ascertain the effect of calibration on (i) trust in the model, and (ii) the correlation between decisions and predictions. We also propose further corrections to the reported calibrated scores based on Kahneman and Tversky's prospect theory from behavioral economics, and study the effect of these corrections on trust and decision-making. We find that calibration is not sufficient on its own; the prospect theory correction is crucial for increasing the correlation between human decisions and the model's predictions. While this increased correlation suggests higher trust in the model, responses to ``Do you trust the model more?" are unaffected by the method used.

View on arXiv
Comments on this paper