ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.18531
105
0

SAT-SKYLINES: 3D Building Generation from Satellite Imagery and Coarse Geometric Priors

25 August 2025
Zhangyu Jin
Andrew Feng
ArXiv (abs)PDFHTML
Main:8 Pages
11 Figures
Bibliography:3 Pages
3 Tables
Appendix:2 Pages
Abstract

We present SatSkylines, a 3D building generation approach that takes satellite imagery and coarse geometric priors. Without proper geometric guidance, existing image-based 3D generation methods struggle to recover accurate building structures from the top-down views of satellite images alone. On the other hand, 3D detailization methods tend to rely heavily on highly detailed voxel inputs and fail to produce satisfying results from simple priors such as cuboids. To address these issues, our key idea is to model the transformation from interpolated noisy coarse priors to detailed geometries, enabling flexible geometric control without additional computational cost. We have further developed Skylines-50K, a large-scale dataset of over 50,000 unique and stylized 3D building assets in order to support the generations of detailed building models. Extensive evaluations indicate the effectiveness of our model and strong generalization ability.

View on arXiv
Comments on this paper