Task-Stratified Knowledge Scaling Laws for Post-Training Quantized Large Language Models
- MQ
Post-Training Quantization (PTQ) is a critical strategy for efficient Large Language Models (LLMs) deployment. However, existing scaling laws primarily focus on general performance, overlooking crucial fine-grained factors and how quantization differentially impacts diverse knowledge capabilities. To address this, we establish Task-Stratified Knowledge Scaling Laws. By stratifying capabilities into memorization, application, and reasoning, we develop a framework that unifies model size, bit-width, and fine-grained factors: group size and calibration set size. Validated on 293 diverse PTQ configurations, our framework demonstrates strong fit and cross-architecture consistency. It reveals distinct sensitivities across knowledge capabilities: reasoning is precision-critical, application is scale-responsive, and memorization is calibration-sensitive. We highlight that in low-bit scenarios, optimizing these fine-grained factors is essential for preventing performance collapse. These findings provide an empirically-backed foundation for designing knowledge-aware quantization strategies.
View on arXiv