ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.18839
159
1
v1v2 (latest)

DRMD: Deep Reinforcement Learning for Malware Detection under Concept Drift

26 August 2025
Shae McFadden
Myles Foley
Mario DÓnghia
Chris Hicks
V. Mavroudis
Nicola Paoletti
Fabio Pierazzi
ArXiv (abs)PDFHTMLGithub (2★)
Main:6 Pages
1 Figures
Bibliography:3 Pages
4 Tables
Appendix:2 Pages
Abstract

Malware detection in real-world settings must deal with evolving threats, limited labeling budgets, and uncertain predictions. Traditional classifiers, without additional mechanisms, struggle to maintain performance under concept drift in malware domains, as their supervised learning formulation cannot optimize when to defer decisions to manual labeling and adaptation. Modern malware detection pipelines combine classifiers with monthly active learning (AL) and rejection mechanisms to mitigate the impact of concept drift. In this work, we develop a novel formulation of malware detection as a one-step Markov Decision Process and train a deep reinforcement learning (DRL) agent, simultaneously optimizing sample classification performance and rejecting high-risk samples for manual labeling. We evaluated the joint detection and drift mitigation policy learned by the DRL-based Malware Detection (DRMD) agent through time-aware evaluations on Android malware datasets subject to realistic drift requiring multi-year performance stability. The policies learned under these conditions achieve a higher Area Under Time (AUT) performance compared to standard classification approaches used in the domain, showing improved resilience to concept drift. Specifically, the DRMD agent achieved an average AUT improvement of 8.66 and 10.90 for the classification-only and classification-rejection policies, respectively. Our results demonstrate for the first time that DRL can facilitate effective malware detection and improved resiliency to concept drift in the dynamic setting of Android malware detection.

View on arXiv
Comments on this paper