ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.20595
108
0

Disruptive Attacks on Face Swapping via Low-Frequency Perceptual Perturbations

28 August 2025
Mengxiao Huang
Minglei Shu
Shuwang Zhou
Zhaoyang Liu
    AAMLPICV
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:2 Pages
7 Tables
Abstract

Deepfake technology, driven by Generative Adversarial Networks (GANs), poses significant risks to privacy and societal security. Existing detection methods are predominantly passive, focusing on post-event analysis without preventing attacks. To address this, we propose an active defense method based on low-frequency perceptual perturbations to disrupt face swapping manipulation, reducing the performance and naturalness of generated content. Unlike prior approaches that used low-frequency perturbations to impact classification accuracy,our method directly targets the generative process of deepfake techniques. We combine frequency and spatial domain features to strengthen defenses. By introducing artifacts through low-frequency perturbations while preserving high-frequency details, we ensure the output remains visually plausible. Additionally, we design a complete architecture featuring an encoder, a perturbation generator, and a decoder, leveraging discrete wavelet transform (DWT) to extract low-frequency components and generate perturbations that disrupt facial manipulation models. Experiments on CelebA-HQ and LFW demonstrate significant reductions in face-swapping effectiveness, improved defense success rates, and preservation of visual quality.

View on arXiv
Comments on this paper