ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.20610
62
0

Studying Effective String Theory using deep generative models

28 August 2025
M. Caselle
E. Cellini
A. Nada
ArXiv (abs)PDFHTML
Main:6 Pages
3 Figures
Bibliography:4 Pages
3 Tables
Abstract

Effective String Theory (EST) offers a robust non-perturbative framework for describing confinement in Yang-Mills theory by treating the confining flux tube between a static quark-antiquark pair as a thin, vibrating string. While EST calculations are typically carried out using zeta-function regularization, certain problems-such as determining the flux tube width-are too complex to solve analytically. However, recent studies have demonstrated that EST can be explored numerically by employing deep learning techniques based on generative algorithms. In this work, we provide a brief introduction to EST and this novel numerical approach. Finally, we present results for the width of the Nambu-Gotö EST.

View on arXiv
Comments on this paper