ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.20626
52
0

ArtFace: Towards Historical Portrait Face Identification via Model Adaptation

28 August 2025
Francois Poh
Anjith George
S´ebastien Marcel
    CVBM
ArXiv (abs)PDFHTMLGithub (19501★)
Main:3 Pages
3 Figures
Bibliography:1 Pages
4 Tables
Abstract

Identifying sitters in historical paintings is a key task for art historians, offering insight into their lives and how they chose to be seen. However, the process is often subjective and limited by the lack of data and stylistic variations. Automated facial recognition is capable of handling challenging conditions and can assist, but while traditional facial recognition models perform well on photographs, they struggle with paintings due to domain shift and high intra-class variation. Artistic factors such as style, skill, intent, and influence from other works further complicate recognition. In this work, we investigate the potential of foundation models to improve facial recognition in artworks. By fine-tuning foundation models and integrating their embeddings with those from conventional facial recognition networks, we demonstrate notable improvements over current state-of-the-art methods. Our results show that foundation models can bridge the gap where traditional methods are ineffective. Paper page atthis https URL

View on arXiv
Comments on this paper