ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.21007
52
0

Rapid Mismatch Estimation via Neural Network Informed Variational Inference

28 August 2025
Mateusz Jaszczuk
Nadia Figueroa
    DRL
ArXiv (abs)PDFHTML
Main:8 Pages
14 Figures
Bibliography:4 Pages
4 Tables
Appendix:10 Pages
Abstract

With robots increasingly operating in human-centric environments, ensuring soft and safe physical interactions, whether with humans, surroundings, or other machines, is essential. While compliant hardware can facilitate such interactions, this work focuses on impedance controllers that allow torque-controlled robots to safely and passively respond to contact while accurately executing tasks. From inverse dynamics to quadratic programming-based controllers, the effectiveness of these methods relies on accurate dynamics models of the robot and the object it manipulates. Any model mismatch results in task failures and unsafe behaviors. Thus, we introduce Rapid Mismatch Estimation (RME), an adaptive, controller-agnostic, probabilistic framework that estimates end-effector dynamics mismatches online, without relying on external force-torque sensors. From the robot's proprioceptive feedback, a Neural Network Model Mismatch Estimator generates a prior for a Variational Inference solver, which rapidly converges to the unknown parameters while quantifying uncertainty. With a real 7-DoF manipulator driven by a state-of-the-art passive impedance controller, RME adapts to sudden changes in mass and center of mass at the end-effector in ∼400\sim400∼400 ms, in static and dynamic settings. We demonstrate RME in a collaborative scenario where a human attaches an unknown basket to the robot's end-effector and dynamically adds/removes heavy items, showcasing fast and safe adaptation to changing dynamics during physical interaction without any external sensory system.

View on arXiv
Comments on this paper