ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.00036
12
0

A-FloPS: Accelerating Diffusion Sampling with Adaptive Flow Path Sampler

22 August 2025
Cheng Jin
Zhenyu Xiao
Yuantao Gu
ArXiv (abs)PDFHTML
Main:7 Pages
9 Figures
Bibliography:1 Pages
3 Tables
Appendix:6 Pages
Abstract

Diffusion models deliver state-of-the-art generative performance across diverse modalities but remain computationally expensive due to their inherently iterative sampling process. Existing training-free acceleration methods typically improve numerical solvers for the reverse-time ODE, yet their effectiveness is fundamentally constrained by the inefficiency of the underlying sampling trajectories. We propose A-FloPS (Adaptive Flow Path Sampler), a principled, training-free framework that reparameterizes the sampling trajectory of any pre-trained diffusion model into a flow-matching form and augments it with an adaptive velocity decomposition. The reparameterization analytically maps diffusion scores to flow-compatible velocities, yielding integration-friendly trajectories without retraining. The adaptive mechanism further factorizes the velocity field into a linear drift term and a residual component whose temporal variation is actively suppressed, restoring the accuracy benefits of high-order integration even in extremely low-NFE regimes. Extensive experiments on conditional image generation and text-to-image synthesis show that A-FloPS consistently outperforms state-of-the-art training-free samplers in both sample quality and efficiency. Notably, with as few as 555 function evaluations, A-FloPS achieves substantially lower FID and generates sharper, more coherent images. The adaptive mechanism also improves native flow-based generative models, underscoring its generality. These results position A-FloPS as a versatile and effective solution for high-quality, low-latency generative modeling.

View on arXiv
Comments on this paper