ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.00735
8
0

Task-Aware Adaptive Modulation: A Replay-Free and Resource-Efficient Approach For Continual Graph Learning

31 August 2025
Jingtao Liu
Xinming Zhang
ArXiv (abs)PDFHTML
Main:6 Pages
6 Figures
Bibliography:2 Pages
4 Tables
Appendix:3 Pages
Abstract

Continual Graph Learning(CGL)focuses on acquiring new knowledge while retaining previously learned information, essential for real-world graph applications. Current methods grapple with two main issues:1) The Stability-Plasticity Dilemma: Replay-based methods often create an imbalance between the Dilemma, while incurring significant storage costs.2) The Resource-Heavy Pre-training: Leading replay-free methods critically depend on extensively pre-trained backbones, this reliance imposes a substantial resourcethis http URLthis paper, we argue that the key to overcoming these challenges lies not in replaying data or fine-tuning the entire network, but in dynamically modulating the internal computational flow of a frozen backbone. We posit that lightweight, task-specific modules can effectively steer a GNN's reasoning process. Motivated by this insight, we propose Task-Aware Adaptive Modulation(TAAM), a replay-free, resource-efficient approach that charts a new path for navigating the stability-plasticity dilemma. TAAM's core is its Neural Synapse Modulators(NSM), which are trained and then frozen for each task to store expert knowledge. A pivotal prototype-guided strategy governs these modulators: 1) For training, it initializes a new NSM by deep-copying from a similar past modulator to boost knowledge transfer. 2) For inference, it selects the most relevant frozen NSM for each task. These NSMs insert into a frozen GNN backbone to perform fine-grained, node-attentive modulation of its internal flow-different from the static perturbations of prior methods. Extensive experiments show that TAAM comprehensively outperforms state-of-the-art methods across six GCIL benchmark datasets. The code will be released upon acceptance of the paper.

View on arXiv
Comments on this paper