ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.01119
105
1

SC-GIR: Goal-oriented Semantic Communication via Invariant Representation Learning

IEEE Transactions on Mobile Computing (IEEE TMC), 2025
1 September 2025
Senura Wanasekara
Van-Dinh Nguyen
Kok-Seng
M.-Duong Nguyen
Symeon Chatzinotas
O. Dobre
ArXiv (abs)PDFHTML
Main:13 Pages
11 Figures
Bibliography:2 Pages
10 Tables
Appendix:1 Pages
Abstract

Goal-oriented semantic communication (SC) aims to revolutionize communication systems by transmitting only task-essential information. However, current approaches face challenges such as joint training at transceivers, leading to redundant data exchange and reliance on labeled datasets, which limits their task-agnostic utility. To address these challenges, we propose a novel framework called Goal-oriented Invariant Representation-based SC (SC-GIR) for image transmission. Our framework leverages self-supervised learning to extract an invariant representation that encapsulates crucial information from the source data, independent of the specific downstream task. This compressed representation facilitates efficient communication while retaining key features for successful downstream task execution. Focusing on machine-to-machine tasks, we utilize covariance-based contrastive learning techniques to obtain a latent representation that is both meaningful and semantically dense. To evaluate the effectiveness of the proposed scheme on downstream tasks, we apply it to various image datasets for lossy compression. The compressed representations are then used in a goal-oriented AI task. Extensive experiments on several datasets demonstrate that SC-GIR outperforms baseline schemes by nearly 10%,, and achieves over 85% classification accuracy for compressed data under different SNR conditions. These results underscore the effectiveness of the proposed framework in learning compact and informative latent representations.

View on arXiv
Comments on this paper