ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.01221
173
0
v1v2 (latest)

DaMoC: Efficiently Selecting the Optimal Large Language Model for Fine-tuning Domain Taks Based on Data and Model Compression

1 September 2025
Wei Huang
Huang Wei
Yinggui Wang
ArXiv (abs)PDFHTML
Main:8 Pages
2 Figures
Bibliography:3 Pages
14 Tables
Appendix:5 Pages
Abstract

Large language models (LLMs) excel in general tasks but struggle with domain-specific ones, requiring fine-tuning with specific data. With many open-source LLMs available, selecting the best model for fine-tuning downstream tasks is challenging, primarily focusing on how to quickly identify the optimal LLM. We introduce a Data and Model Compression Framework (DaMoC) that addresses this challenge by: 1) Data Level: A systematic categorization of data filtering methodologies for LLMs is first established, classifying them into three distinct paradigms: (1) distribution-aware methods, (2) quality-aware methods, and (3) hybrid approaches considering both dimensions. Further, we enhance the density of key tokens in the text achieving token compression. Subsequently, we use an LLM to iterative rewrite the text to optimize its expression. 2) Model Level: We use layer similarity scores to assess each layer's importance and remove those with lower importance. Then, we introduce a sparse merging paradigm to preserve as much of the original model's capability as possible. Extensive experiments on four datasets, medical Q&A, financial Q&A, general Q&A, and reading comprehension, show that we can select the optimal LLM while saving approximately 20-fold in training time.

View on arXiv
Comments on this paper