ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.02217
150
0

ST-Hyper: Learning High-Order Dependencies Across Multiple Spatial-Temporal Scales for Multivariate Time Series Forecasting

2 September 2025
Binqing Wu
Jianlong Huang
Zongjiang Shang
Ling Chen
    AI4TS
ArXiv (abs)PDFHTML
Main:8 Pages
6 Figures
Bibliography:2 Pages
7 Tables
Abstract

In multivariate time series (MTS) forecasting, many deep learning based methods have been proposed for modeling dependencies at multiple spatial (inter-variate) or temporal (intra-variate) scales. However, existing methods may fail to model dependencies across multiple spatial-temporal scales (ST-scales, i.e., scales that jointly consider spatial and temporal scopes). In this work, we propose ST-Hyper to model the high-order dependencies across multiple ST-scales through adaptive hypergraph modeling. Specifically, we introduce a Spatial-Temporal Pyramid Modeling (STPM) module to extract features at multiple ST-scales. Furthermore, we introduce an Adaptive Hypergraph Modeling (AHM) module that learns a sparse hypergraph to capture robust high-order dependencies among features. In addition, we interact with these features through tri-phase hypergraph propagation, which can comprehensively capture multi-scale spatial-temporal dynamics. Experimental results on six real-world MTS datasets demonstrate that ST-Hyper achieves the state-of-the-art performance, outperforming the best baselines with an average MAE reduction of 3.8\% and 6.8\% for long-term and short-term forecasting, respectively.

View on arXiv
Comments on this paper