ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.02340
88
0

Explainability-Driven Dimensionality Reduction for Hyperspectral Imaging

2 September 2025
S. Haidar
José Oramas
ArXiv (abs)PDFHTML
Main:9 Pages
5 Figures
Bibliography:3 Pages
3 Tables
Abstract

Hyperspectral imaging (HSI) provides rich spectral information for precise material classification and analysis; however, its high dimensionality introduces a computational burden and redundancy, making dimensionality reduction essential. We present an exploratory study into the application of post-hoc explainability methods in a model--driven framework for band selection, which reduces the spectral dimension while preserving predictive performance. A trained classifier is probed with explanations to quantify each band's contribution to its decisions. We then perform deletion--insertion evaluations, recording confidence changes as ranked bands are removed or reintroduced, and aggregate these signals into influence scores. Selecting the highest--influence bands yields compact spectral subsets that maintain accuracy and improve efficiency. Experiments on two public benchmarks (Pavia University and Salinas) demonstrate that classifiers trained on as few as 30 selected bands match or exceed full--spectrum baselines while reducing computational requirements. The resulting subsets align with physically meaningful, highly discriminative wavelength regions, indicating that model--aligned, explanation-guided band selection is a principled route to effective dimensionality reduction for HSI.

View on arXiv
Comments on this paper