ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.02565
168
0
v1v2 (latest)

Understanding sparse autoencoder scaling in the presence of feature manifolds

2 September 2025
Eric J. Michaud
Liv Gorton
Tom McGrath
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
8 Figures
Bibliography:3 Pages
Appendix:6 Pages
Abstract

Sparse autoencoders (SAEs) model the activations of a neural network as linear combinations of sparsely occurring directions of variation (latents). The ability of SAEs to reconstruct activations follows scaling laws w.r.t. the number of latents. In this work, we adapt a capacity-allocation model from the neural scaling literature (Brill, 2024) to understand SAE scaling, and in particular, to understand how "feature manifolds" (multi-dimensional features) influence scaling behavior. Consistent with prior work, the model recovers distinct scaling regimes. Notably, in one regime, feature manifolds have the pathological effect of causing SAEs to learn far fewer features in data than there are latents in the SAE. We provide some preliminary discussion on whether or not SAEs are in this pathological regime in the wild.

View on arXiv
Comments on this paper