ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.03816
24
0

Finetuning AI Foundation Models to Develop Subgrid-Scale Parameterizations: A Case Study on Atmospheric Gravity Waves

4 September 2025
Aman Gupta
A. Sheshadri
Sujit Roy
J. Schmude
Vishal Gaur
Wei Ji Leong
M. Maskey
Rahul Ramachandran
    AI4Cl
ArXiv (abs)PDFHTML
Main:22 Pages
12 Figures
Bibliography:6 Pages
Abstract

Global climate models parameterize a range of atmospheric-oceanic processes like gravity waves, clouds, moist convection, and turbulence that cannot be sufficiently resolved. These subgrid-scale closures for unresolved processes are a leading source of model uncertainty. Here, we present a new approach to developing machine learning parameterizations of small-scale climate processes by fine-tuning a pre-trained AI foundation model (FM). FMs are largely unexplored in climate research. A pre-trained encoder-decoder from a 2.3 billion parameter FM (NASA and IBM Research's Prithvi WxC) -- which contains a latent probabilistic representation of atmospheric evolution -- is fine-tuned (or reused) to create a deep learning parameterization for atmospheric gravity waves (GWs). The parameterization captures GW effects for a coarse-resolution climate model by learning the fluxes from an atmospheric reanalysis with 10 times finer resolution. A comparison of monthly averages and instantaneous evolution with a machine learning model baseline (an Attention U-Net) reveals superior predictive performance of the FM parameterization throughout the atmosphere, even in regions excluded from pre-training. This performance boost is quantified using the Hellinger distance, which is 0.11 for the baseline and 0.06 for the fine-tuned model. Our findings emphasize the versatility and reusability of FMs, which could be used to accomplish a range of atmosphere- and climate-related applications, leading the way for the creation of observations-driven and physically accurate parameterizations for more earth-system processes.

View on arXiv
Comments on this paper