42

CANDY: Benchmarking LLMs' Limitations and Assistive Potential in Chinese Misinformation Fact-Checking

Main:8 Pages
11 Figures
Bibliography:4 Pages
14 Tables
Appendix:23 Pages
Abstract

The effectiveness of large language models (LLMs) to fact-check misinformation remains uncertain, despite their growing use. To this end, we present CANDY, a benchmark designed to systematically evaluate the capabilities and limitations of LLMs in fact-checking Chinese misinformation. Specifically, we curate a carefully annotated dataset of ~20k instances. Our analysis shows that current LLMs exhibit limitations in generating accurate fact-checking conclusions, even when enhanced with chain-of-thought reasoning and few-shot prompting. To understand these limitations, we develop a taxonomy to categorize flawed LLM-generated explanations for their conclusions and identify factual fabrication as the most common failure mode. Although LLMs alone are unreliable for fact-checking, our findings indicate their considerable potential to augment human performance when deployed as assistive tools in scenarios. Our dataset and code can be accessed atthis https URL

View on arXiv
Comments on this paper