ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.05393
16
0

Inferring Prerequisite Knowledge Concepts in Educational Knowledge Graphs: A Multi-criteria Approach

5 September 2025
R. Alatrash
Mohamed Amine Chatti
Nasha Wibowo
Qurat Ul Ain
    AI4Ed
ArXiv (abs)PDFHTML
Main:14 Pages
Bibliography:2 Pages
5 Tables
Abstract

Educational Knowledge Graphs (EduKGs) organize various learning entities and their relationships to support structured and adaptive learning. Prerequisite relationships (PRs) are critical in EduKGs for defining the logical order in which concepts should be learned. However, the current EduKG in the MOOC platform CourseMapper lacks explicit PR links, and manually annotating them is time-consuming and inconsistent. To address this, we propose an unsupervised method for automatically inferring concept PRs without relying on labeled data. We define ten criteria based on document-based, Wikipedia hyperlink-based, graph-based, and text-based features, and combine them using a voting algorithm to robustly capture PRs in educational content. Experiments on benchmark datasets show that our approach achieves higher precision than existing methods while maintaining scalability and adaptability, thus providing reliable support for sequence-aware learning in CourseMapper.

View on arXiv
Comments on this paper