ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.05776
24
0

Posterior shape models revisited: Improving 3D reconstructions from partial data using target specific models

6 September 2025
Jonathan Aellen
Florian Burkhardt
T. Vetter
M. Lüthi
ArXiv (abs)PDFHTMLGithub (1★)
Main:11 Pages
15 Figures
Bibliography:5 Pages
4 Tables
Appendix:9 Pages
Abstract

In medical imaging, point distribution models are often used to reconstruct and complete partial shapes using a statistical model of the full shape. A commonly overlooked, but crucial factor in this reconstruction process, is the pose of the training data relative to the partial target shape. A difference in pose alignment of the training and target shape leads to biased solutions, particularly when observing small parts of a shape. In this paper, we demonstrate the importance of pose alignment for partial shape reconstructions and propose an efficient method to adjust an existing model to a specific target. Our method preserves the computational efficiency of linear models while significantly improving reconstruction accuracy and predicted variance. It exactly recovers the intended aligned model for translations, and provides a good approximation for small rotations, all without access to the original training data. Hence, existing shape models in reconstruction pipelines can be adapted by a simple preprocessing step, making our approach widely applicable in plug-and-play scenarios.

View on arXiv
Comments on this paper