ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.06167
69
0

Exploring Urban Factors with Autoencoders: Relationship Between Static and Dynamic Features

7 September 2025
Ximena Pocco
Waqar Hassan
Karelia Salinas
Vladimir Molchanov
Luis G. Nonato
ArXiv (abs)PDFHTMLGithub
Main:5 Pages
6 Figures
Bibliography:1 Pages
1 Tables
Abstract

Urban analytics utilizes extensive datasets with diverse urban information to simulate, predict trends, and uncover complex patterns within cities. While these data enables advanced analysis, it also presents challenges due to its granularity, heterogeneity, and multimodality. To address these challenges, visual analytics tools have been developed to support the exploration of latent representations of fused heterogeneous and multimodal data, discretized at a street-level of detail. However, visualization-assisted tools seldom explore the extent to which fused data can offer deeper insights than examining each data source independently within an integrated visualization framework. In this work, we developed a visualization-assisted framework to analyze whether fused latent data representations are more effective than separate representations in uncovering patterns from dynamic and static urban data. The analysis reveals that combined latent representations produce more structured patterns, while separate ones are useful in particular cases.

View on arXiv
Comments on this paper