Investigating Location-Regularised Self-Supervised Feature Learning for Seafloor Visual Imagery
- ViT
High-throughput interpretation of robotically gathered seafloor visual imagery can increase the efficiency of marine monitoring and exploration. Although recent research has suggested that location metadata can enhance self-supervised feature learning (SSL), its benefits across different SSL strategies, models and seafloor image datasets are underexplored. This study evaluates the impact of location-based regularisation on six state-of-the-art SSL frameworks, which include Convolutional Neural Network (CNN) and Vision Transformer (ViT) models with varying latent-space dimensionality. Evaluation across three diverse seafloor image datasets finds that location-regularisation consistently improves downstream classification performance over standard SSL, with average F1-score gains of for CNNs and for ViTs, respectively. While CNNs pretrained on generic datasets benefit from high-dimensional latent representations, dataset-optimised SSL achieves similar performance across the high (512) and low (128) dimensional latent representations. Location-regularised SSL improves CNN performance over pre-trained models by and for high and low-dimensional latent representations, respectively. For ViTs, high-dimensionality benefits both pre-trained and dataset-optimised SSL. Although location-regularisation improves SSL performance compared to standard SSL methods, pre-trained ViTs show strong generalisation, matching the best-performing location-regularised SSL with F1-scores of and , respectively. The findings highlight the value of location metadata for SSL regularisation, particularly when using low-dimensional latent representations, and demonstrate strong generalisation of high-dimensional ViTs for seafloor image analysis.
View on arXiv