ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.07149
71
0

Measuring Uncertainty in Transformer Circuits with Effective Information Consistency

8 September 2025
Anatoly A. Krasnovsky
ArXiv (abs)PDFHTML
Main:8 Pages
1 Figures
Bibliography:2 Pages
Abstract

Mechanistic interpretability has identified functional subgraphs within large language models (LLMs), known as Transformer Circuits (TCs), that appear to implement specific algorithms. Yet we lack a formal, single-pass way to quantify when an active circuit is behaving coherently and thus likely trustworthy. Building on prior systems-theoretic proposals, we specialize a sheaf/cohomology and causal emergence perspective to TCs and introduce the Effective-Information Consistency Score (EICS). EICS combines (i) a normalized sheaf inconsistency computed from local Jacobians and activations, with (ii) a Gaussian EI proxy for circuit-level causal emergence derived from the same forward state. The construction is white-box, single-pass, and makes units explicit so that the score is dimensionless. We further provide practical guidance on score interpretation, computational overhead (with fast and exact modes), and a toy sanity-check analysis. Empirical validation on LLM tasks is deferred.

View on arXiv
Comments on this paper