ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.07920
29
0

ScoreHOI: Physically Plausible Reconstruction of Human-Object Interaction via Score-Guided Diffusion

9 September 2025
Ao Li
Jinpeng Liu
Yixuan Zhu
Yansong Tang
    DiffM
ArXiv (abs)PDFHTML
Main:8 Pages
8 Figures
Bibliography:3 Pages
5 Tables
Appendix:2 Pages
Abstract

Joint reconstruction of human-object interaction marks a significant milestone in comprehending the intricate interrelations between humans and their surrounding environment. Nevertheless, previous optimization methods often struggle to achieve physically plausible reconstruction results due to the lack of prior knowledge about human-object interactions. In this paper, we introduce ScoreHOI, an effective diffusion-based optimizer that introduces diffusion priors for the precise recovery of human-object interactions. By harnessing the controllability within score-guided sampling, the diffusion model can reconstruct a conditional distribution of human and object pose given the image observation and object feature. During inference, the ScoreHOI effectively improves the reconstruction results by guiding the denoising process with specific physical constraints. Furthermore, we propose a contact-driven iterative refinement approach to enhance the contact plausibility and improve the reconstruction accuracy. Extensive evaluations on standard benchmarks demonstrate ScoreHOI's superior performance over state-of-the-art methods, highlighting its ability to achieve a precise and robust improvement in joint human-object interaction reconstruction.

View on arXiv
Comments on this paper