Explainable Semantic Text Relations: A Question-Answering Framework for Comparing Document Content
- KELM

Understanding semantic relations between two texts is crucial for many information and document management tasks, in which one must determine whether the content fully overlaps, is completely superseded by another document, or overlaps only partially, with unique information in each. Beyond establishing this relation, it is equally important to provide explainable outputs that specify which pieces of information are present, missing, or newly added between the text pair. In this study, we formally define semantic relations between two texts through the set-theoretic relation between their respective Answerable Question Sets (AQS), the sets of questions each text can answer. Under this formulation, Semantic Text Relation (STR), such as equivalence, inclusion, and mutual overlap, becomes a well-defined set relation between the corresponding texts' AQSs. The set differences between the AQSs also serve as an explanation or diagnostic tool for identifying how the information in the texts diverges. Using this definition, we construct a synthetic benchmark that captures fine-grained informational relations through controlled paraphrasing and deliberate information removal supported by AQS manipulations. We then use this dataset to evaluate several discriminative and generative models for classifying text pairs into STR categories, assessing how well different model architectures capture semantic relations beyond surface-level similarity. We publicly release both the dataset and the data generation code to support further research.
View on arXiv