12

Physics-informed sensor coverage through structure preserving machine learning

Main:23 Pages
17 Figures
Bibliography:5 Pages
Appendix:7 Pages
Abstract

We present a machine learning framework for adaptive source localization in which agents use a structure-preserving digital twin of a coupled hydrodynamic-transport system for real-time trajectory planning and data assimilation. The twin is constructed with conditional neural Whitney forms (CNWF), coupling the numerical guarantees of finite element exterior calculus (FEEC) with transformer-based operator learning. The resulting model preserves discrete conservation, and adapts in real time to streaming sensor data. It employs a conditional attention mechanism to identify: a reduced Whitney-form basis; reduced integral balance equations; and a source field, each compatible with given sensor measurements. The induced reduced-order environmental model retains the stability and consistency of standard finite-element simulation, yielding a physically realizable, regular mapping from sensor data to the source field. We propose a staggered scheme that alternates between evaluating the digital twin and applying Lloyd's algorithm to guide sensor placement, with analysis providing conditions for monotone improvement of a coverage functional. Using the predicted source field as an importance function within an optimal-recovery scheme, we demonstrate recovery of point sources under continuity assumptions, highlighting the role of regularity as a sufficient condition for localization. Experimental comparisons with physics-agnostic transformer architectures show improved accuracy in complex geometries when physical constraints are enforced, indicating that structure preservation provides an effective inductive bias for source identification.

View on arXiv
Comments on this paper