ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.10707
59
0
v1v2 (latest)

Understanding AI Evaluation Patterns: How Different GPT Models Assess Vision-Language Descriptions

12 September 2025
Sajjad Abdoli
Rudi Cilibrasi
Rima Al-Shikh
    EGVM
ArXiv (abs)PDFHTML
Main:6 Pages
12 Figures
8 Tables
Appendix:46 Pages
Abstract

As AI systems increasingly evaluate other AI outputs, understanding their assessment behavior becomes crucial for preventing cascading biases. This study analyzes vision-language descriptions generated by NVIDIA's Describe Anything Model and evaluated by three GPT variants (GPT-4o, GPT-4o-mini, GPT-5) to uncover distinct "evaluation personalities" the underlying assessment strategies and biases each model demonstrates. GPT-4o-mini exhibits systematic consistency with minimal variance, GPT-4o excels at error detection, while GPT-5 shows extreme conservatism with high variability. Controlled experiments using Gemini 2.5 Pro as an independent question generator validate that these personalities are inherent model properties rather than artifacts. Cross-family analysis through semantic similarity of generated questions reveals significant divergence: GPT models cluster together with high similarity while Gemini exhibits markedly different evaluation strategies. All GPT models demonstrate a consistent 2:1 bias favoring negative assessment over positive confirmation, though this pattern appears family-specific rather than universal across AI architectures. These findings suggest that evaluation competence does not scale with general capability and that robust AI assessment requires diverse architectural perspectives.

View on arXiv
Comments on this paper