ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.11334
67
0

Dual Band Video Thermography Near Ambient Conditions

14 September 2025
Sriram Narayanan
Mani Ramanagopal
S. Narasimhan
ArXiv (abs)PDFHTML
Main:7 Pages
9 Figures
Bibliography:3 Pages
Appendix:1 Pages
Abstract

Long-wave infrared radiation captured by a thermal camera consists of two components: (a) light from the environment reflected or transmitted by a surface, and (b) light emitted by the surface after undergoing heat transport through the object and exchanging heat with the surrounding environment. Separating these components is essential for understanding object properties such as emissivity, temperature, reflectance and shape. Previous thermography studies often assume that only one component is dominant (e.g., in welding) or that the second component is constant and can be subtracted. However, in near-ambient conditions, which are most relevant to computer vision applications, both components are typically comparable in magnitude and vary over time. We introduce the first method that separates reflected and emitted components of light in videos captured by two thermal cameras with different spectral sensitivities. We derive a dual-band thermal image formation model and develop algorithms to estimate the surface's emissivity and its time-varying temperature while isolating a dynamic background. We quantitatively evaluate our approach using carefully calibrated emissivities for a range of materials and show qualitative results on complex everyday scenes, such as a glass filled with hot liquid and people moving in the background.

View on arXiv
Comments on this paper