ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.11598
32
0
v1v2v3 (latest)

Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework

15 September 2025
Siming Fu
Sijun Dong
Xiaoliang Meng
ArXiv (abs)PDFHTMLGithub
Main:10 Pages
3 Figures
Bibliography:4 Pages
13 Tables
Appendix:6 Pages
Abstract

Despite the remarkable success of Self-Supervised Learning (SSL), its generalization is fundamentally hindered by Shortcut Learning, where models exploit superficial features like texture instead of intrinsic structure. We experimentally verify this flaw within the generative paradigm (e.g., MAE) and argue it is a systemic issue also affecting discriminative methods, identifying it as the root cause of their failure on unseen domains. While existing methods often tackle this at a surface level by aligning or separating domain-specific features, they fail to alter the underlying learning mechanism that fosters shortcut dependency. To address this at its core, we propose HyGDL (Hybrid Generative-Discriminative Learning Framework), a hybrid framework that achieves explicit content-style disentanglement. Our approach is guided by the Invariance Pre-training Principle: forcing a model to learn an invariant essence by systematically varying a bias (e.g., style) at the input while keeping the supervision signal constant. HyGDL operates on a single encoder and analytically defines style as the component of a representation that is orthogonal to its style-invariant content, derived via vector projection. This is operationalized through a synergistic design: (1) a self-distillation objective learns a stable, style-invariant content direction; (2) an analytical projection then decomposes the representation into orthogonal content and style vectors; and (3) a style-conditioned reconstruction objective uses these vectors to restore the image, providing end-to-end supervision. Unlike prior methods that rely on implicit heuristics, this principled disentanglement allows HyGDL to learn truly robust representations, demonstrating superior performance on benchmarks designed to diagnose shortcut learning.

View on arXiv
Comments on this paper