192
v1v2v3 (latest)

AgenticIE: An Adaptive Agent for Information Extraction from Complex Regulatory Documents

Main:9 Pages
8 Figures
Bibliography:2 Pages
6 Tables
Appendix:12 Pages
Abstract

Declaration of Performance (DoP) documents, mandated by EU regulation, specify characteristics of construction products, such as fire resistance and insulation. While this information is essential for quality control and reducing carbon footprints, it is not easily machine readable. Despite content requirements, DoPs exhibit significant variation in layout, schema, and format, further complicated by their multilingual nature. In this work, we propose DoP Key Information Extraction (KIE) and Question Answering (QA) as new NLP challenges. To address this challenge, we design a domain-specific AgenticIE system based on a planner-executor-corresponder pattern. For evaluation, we introduce a high-density, expert-annotated dataset of complex, multi-page regulatory documents in English and German. Unlike standard IE datasets (e.g., FUNSD, CORD) with sparse annotations, our dataset contains over 15K annotated entities, averaging over 190 annotations per document. Our agentic system outperforms static and multimodal LLM baselines, achieving Exact Match (EM) scores of 0.396 vs. 0.342 (GPT-4o, +16%) and 0.314 (GPT-4o-V, +26%) across the KIE and QA tasks. Our experimental analysis validates the benefits of the agentic system, as well as the challenging nature of our new DoP dataset.

View on arXiv
Comments on this paper