ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.11961
5
1

Spec-LLaVA: Accelerating Vision-Language Models with Dynamic Tree-Based Speculative Decoding

15 September 2025
Mingxiao Huo
Jiayi Zhang
Hewei Wang
Jinfeng Xu
Zheyu Chen
Huilin Tai
Yijun Chen
    MLLMVLM
ArXiv (abs)PDFHTML
Main:4 Pages
2 Figures
Bibliography:3 Pages
2 Tables
Abstract

Vision-Language Models (VLMs) enable powerful multimodal reasoning but suffer from slow autoregressive inference, limiting their deployment in real-time applications. We introduce Spec-LLaVA, a system that applies speculative decoding to accelerate VLMs without sacrificing output quality. Spec-LLaVA pairs a lightweight draft VLM with a large target model: the draft speculates future tokens, which the target verifies in parallel, allowing multiple tokens to be generated per step. To maximize efficiency, we design a dynamic tree-based verification algorithm that adaptively expands and prunes speculative branches using draft model confidence. On MS COCO out-of-domain images, Spec-LLaVA achieves up to 3.28×\times× faster decoding on LLaVA-1.5 (7B, 13B) with no loss in generation quality. This work presents a lossless acceleration framework for VLMs using dynamic tree-structured speculative decoding, opening a path toward practical real-time multimodal assistants. Importantly, the lightweight draft model design makes the framework amenable to resource-constrained or on-device deployment settings.

View on arXiv
Comments on this paper