ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.12534
166
1

DeepEyeNet: Generating Medical Report for Retinal Images

16 September 2025
Jia-Hong Huang
    MedIm
ArXiv (abs)PDFHTML
Main:3 Pages
10 Figures
Bibliography:2 Pages
4 Tables
Abstract

The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system, as the demand for ophthalmologists surpasses the available workforce. This imbalance creates a bottleneck in diagnosis and treatment, potentially delaying critical care. Traditional methods of generating medical reports from retinal images rely on manual interpretation, which is time-consuming and prone to errors, further straining ophthalmologists' limited resources. This thesis investigates the potential of Artificial Intelligence (AI) to automate medical report generation for retinal images. AI can quickly analyze large volumes of image data, identifying subtle patterns essential for accurate diagnosis. By automating this process, AI systems can greatly enhance the efficiency of retinal disease diagnosis, reducing doctors' workloads and enabling them to focus on more complex cases. The proposed AI-based methods address key challenges in automated report generation: (1) A multi-modal deep learning approach captures interactions between textual keywords and retinal images, resulting in more comprehensive medical reports; (2) Improved methods for medical keyword representation enhance the system's ability to capture nuances in medical terminology; (3) Strategies to overcome RNN-based models' limitations, particularly in capturing long-range dependencies within medical descriptions; (4) Techniques to enhance the interpretability of the AI-based report generation system, fostering trust and acceptance in clinical practice. These methods are rigorously evaluated using various metrics and achieve state-of-the-art performance. This thesis demonstrates AI's potential to revolutionize retinal disease diagnosis by automating medical report generation, ultimately improving clinical efficiency, diagnostic accuracy, and patient care.

View on arXiv
Comments on this paper