16
v1v2 (latest)

Empowering Multi-Robot Cooperation via Sequential World Models

Main:8 Pages
25 Figures
Bibliography:4 Pages
5 Tables
Appendix:13 Pages
Abstract

Model-based reinforcement learning (MBRL) has shown significant potential in robotics due to its high sample efficiency and planning capability. However, extending MBRL to multi-robot cooperation remains challenging due to the complexity of joint dynamics and the reliance on synchronous communication. SeqWM employs independent, autoregressive agent-wise world models to represent joint dynamics, where each agent generates its future trajectory and plans its actions based on the predictions of its predecessors. This design lowers modeling complexity, alleviates the reliance on communication synchronization, and enables the emergence of advanced cooperative behaviors through explicit intention sharing. Experiments in challenging simulated environments (Bi-DexHands and Multi-Quad) demonstrate that SeqWM outperforms existing state-of-the-art model-based and model-free baselines in both overall performance and sample efficiency, while exhibiting advanced cooperative behaviors such as predictive adaptation, temporal alignment, and role division. Furthermore, SeqWM has been success fully deployed on physical quadruped robots, demonstrating its effectiveness in real-world multi-robot systems. Demos and code are available at:this https URL

View on arXiv
Comments on this paper