ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.13127
169
2

Empowering LLMs with Parameterized Skills for Adversarial Long-Horizon Planning

16 September 2025
Sijia Cui
Shuai Xu
Aiyao He
Yanna Wang
Bo Xu
    LLMAG
ArXiv (abs)PDFHTMLGithub (1★)
Main:8 Pages
12 Figures
Bibliography:2 Pages
Abstract

Recent advancements in Large Language Models(LLMs) have led to the development of LLM-based AI agents. A key challenge is the creation of agents that can effectively ground themselves in complex, adversarial long-horizon environments. Existing methods mainly focus on (1) using LLMs as policies to interact with the environment through generating low-level feasible actions, and (2) utilizing LLMs to generate high-level tasks or language guides to stimulate action generation. However, the former struggles to generate reliable actions, while the latter relies heavily on expert experience to translate high-level tasks into specific action sequences. To address these challenges, we introduce the Plan with Language, Act with Parameter (PLAP) planning framework that facilitates the grounding of LLM-based agents in long-horizon environments. The PLAP method comprises three key components: (1) a skill library containing environment-specific parameterized skills, (2) a skill planner powered by LLMs, and (3) a skill executor converting the parameterized skills into executable action sequences. We implement PLAP in MicroRTS, a long-horizon real-time strategy game that provides an unfamiliar and challenging environment for LLMs. The experimental results demonstrate the effectiveness of PLAP. In particular, GPT-4o-driven PLAP in a zero-shot setting outperforms 80% of baseline agents, and Qwen2-72B-driven PLAP, with carefully crafted few-shot examples, surpasses the top-tier scripted agent, CoacAI. Additionally, we design comprehensive evaluation metrics and test 6 closed-source and 2 open-source LLMs within the PLAP framework, ultimately releasing an LLM leaderboard ranking long-horizon skill planning ability. Our code is available atthis https URL.

View on arXiv
Comments on this paper