28

CLAW: A Vision-Language-Action Framework for Weight-Aware Robotic Grasping

Main:7 Pages
6 Figures
Bibliography:1 Pages
1 Tables
Abstract

Vision-language-action (VLA) models have recently emerged as a promising paradigm for robotic control, enabling end-to-end policies that ground natural language instructions into visuomotor actions. However, current VLAs often struggle to satisfy precise task constraints, such as stopping based on numeric thresholds, since their observation-to-action mappings are implicitly shaped by training data and lack explicit mechanisms for condition monitoring. In this work, we propose CLAW (CLIP-Language-Action for Weight), a framework that decouples condition evaluation from action generation. CLAW leverages a fine-tuned CLIP model as a lightweight prompt generator, which continuously monitors the digital readout of a scale and produces discrete directives based on task-specific weight thresholds. These prompts are then consumed by π0\pi_0, a flow-based VLA policy, which integrates the prompts with multi-view camera observations to produce continuous robot actions. This design enables CLAW to combine symbolic weight reasoning with high-frequency visuomotor control. We validate CLAW on three experimental setups: single-object grasping and mixed-object tasks requiring dual-arm manipulation. Across all conditions, CLAW reliably executes weight-aware behaviors and outperforms both raw-π0\pi_0 and fine-tuned π0\pi_0 models. We have uploaded the videos as supplementary materials.

View on arXiv
Comments on this paper