46

JU-NLP at Touché: Covert Advertisement in Conversational AI-Generation and Detection Strategies

Main:13 Pages
2 Figures
Bibliography:2 Pages
Abstract

This paper proposes a comprehensive framework for the generation of covert advertisements within Conversational AI systems, along with robust techniques for their detection. It explores how subtle promotional content can be crafted within AI-generated responses and introduces methods to identify and mitigate such covert advertising strategies. For generation (Sub-Task~1), we propose a novel framework that leverages user context and query intent to produce contextually relevant advertisements. We employ advanced prompting strategies and curate paired training data to fine-tune a large language model (LLM) for enhanced stealthiness. For detection (Sub-Task~2), we explore two effective strategies: a fine-tuned CrossEncoder (\texttt{all-mpnet-base-v2}) for direct classification, and a prompt-based reformulation using a fine-tuned \texttt{DeBERTa-v3-base} model. Both approaches rely solely on the response text, ensuring practicality for real-world deployment. Experimental results show high effectiveness in both tasks, achieving a precision of 1.0 and recall of 0.71 for ad generation, and F1-scores ranging from 0.99 to 1.00 for ad detection. These results underscore the potential of our methods to balance persuasive communication with transparency in conversational AI.

View on arXiv
Comments on this paper