38
v1v2v3v4 (latest)

Aegis: Automated Error Generation and Attribution for Multi-Agent Systems

Main:8 Pages
5 Figures
Bibliography:5 Pages
8 Tables
Appendix:18 Pages
Abstract

Large language model based multi-agent systems (MAS) have unlocked significant advancements in tackling complex problems, but their increasing capability introduces a structural fragility that makes them difficult to debug. A key obstacle to improving their reliability is the severe scarcity of large-scale, diverse datasets for error attribution, as existing resources rely on costly and unscalable manual annotation. To address this bottleneck, we introduce Aegis, a novel framework for Automated error generation and attribution for multi-agent systems. Aegis constructs a large dataset of 9,533 trajectories with annotated faulty agents and error modes, covering diverse MAS architectures and task domains. This is achieved using a LLM-based manipulator that can adaptively inject context-aware errors into successful execution trajectories. Leveraging fine-grained labels and the structured arrangement of positive-negative sample pairs, Aegis supports three different learning paradigms: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. We develop learning methods for each paradigm. Comprehensive experiments show that trained models consistently achieve substantial improvements in error attribution. Notably, several of our fine-tuned LLMs demonstrate performance competitive with or superior to proprietary models an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems. Our project website is available atthis https URL.

View on arXiv
Comments on this paper