ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.15257
9
0
v1v2 (latest)

RespoDiff: Dual-Module Bottleneck Transformation for Responsible & Faithful T2I Generation

18 September 2025
Silpa Vadakkeeveetil Sreelatha
Sauradip Nag
Muhammad Awais
Serge Belongie
Anjan Dutta
    DiffM
ArXiv (abs)PDFHTML
Main:9 Pages
14 Figures
Bibliography:2 Pages
24 Tables
Appendix:22 Pages
Abstract

The rapid advancement of diffusion models has enabled high-fidelity and semantically rich text-to-image generation; however, ensuring fairness and safety remains an open challenge. Existing methods typically improve fairness and safety at the expense of semantic fidelity and image quality. In this work, we propose RespoDiff, a novel framework for responsible text-to-image generation that incorporates a dual-module transformation on the intermediate bottleneck representations of diffusion models. Our approach introduces two distinct learnable modules: one focused on capturing and enforcing responsible concepts, such as fairness and safety, and the other dedicated to maintaining semantic alignment with neutral prompts. To facilitate the dual learning process, we introduce a novel score-matching objective that enables effective coordination between the modules. Our method outperforms state-of-the-art methods in responsible generation by ensuring semantic alignment while optimizing both objectives without compromising image fidelity. Our approach improves responsible and semantically coherent generation by 20% across diverse, unseen prompts. Moreover, it integrates seamlessly into large-scale models like SDXL, enhancing fairness and safety. Code will be released upon acceptance.

View on arXiv
Comments on this paper