TennisTV: Do Multimodal Large Language Models Understand Tennis Rallies?
- LRM
Multimodal large language models (MLLMs) excel at general video understanding but struggle with fast, high-frequency sports like tennis, where rally clips are short yet information-dense. To systematically evaluate MLLMs in this challenging domain, we present TennisTV, the first and most comprehensive benchmark for tennis video understanding. TennisTV models each rally as a temporal-ordered sequence of consecutive stroke events, using automated pipelines for filtering and question generation. It covers 8 tasks from the stroke level to the rally level and includes 2527 human-verified questions. Evaluating 17 representative MLLMs, we provide the first systematic assessment of tennis video understanding. Results yield two key insights: (i) frame-sampling density should be tailored and balanced across tasks, and (ii) improving temporal grounding is essential for stronger reasoning.
View on arXiv