ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.16437
120
1

SENSE-7: Taxonomy and Dataset for Measuring User Perceptions of Empathy in Sustained Human-AI Conversations

19 September 2025
Jina Suh
Lindy Le
Erfan Shayegani
Gonzalo A. Ramos
Judith Amores
Desmond C. Ong
Mary Czerwinski
Javier Hernández
ArXiv (abs)PDFHTML
Main:16 Pages
7 Figures
Bibliography:3 Pages
5 Tables
Appendix:9 Pages
Abstract

Empathy is increasingly recognized as a key factor in human-AI communication, yet conventional approaches to "digital empathy" often focus on simulating internal, human-like emotional states while overlooking the inherently subjective, contextual, and relational facets of empathy as perceived by users. In this work, we propose a human-centered taxonomy that emphasizes observable empathic behaviors and introduce a new dataset, Sense-7, of real-world conversations between information workers and Large Language Models (LLMs), which includes per-turn empathy annotations directly from the users, along with user characteristics, and contextual details, offering a more user-grounded representation of empathy. Analysis of 695 conversations from 109 participants reveals that empathy judgments are highly individualized, context-sensitive, and vulnerable to disruption when conversational continuity fails or user expectations go unmet. To promote further research, we provide a subset of 672 anonymized conversation and provide exploratory classification analysis, showing that an LLM-based classifier can recognize 5 levels of empathy with an encouraging average Spearman ρ\rhoρ=0.369 and Accuracy=0.487 over this set. Overall, our findings underscore the need for AI designs that dynamically tailor empathic behaviors to user contexts and goals, offering a roadmap for future research and practical development of socially attuned, human-centered artificial agents.

View on arXiv
Comments on this paper