ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.16552
53
2

ST-GS: Vision-Based 3D Semantic Occupancy Prediction with Spatial-Temporal Gaussian Splatting

20 September 2025
Xiaoyang Yan
Muleilan Pei
Shaojie Shen
    3DGS
ArXiv (abs)PDFHTML
Main:7 Pages
4 Figures
Bibliography:1 Pages
Abstract

3D occupancy prediction is critical for comprehensive scene understanding in vision-centric autonomous driving. Recent advances have explored utilizing 3D semantic Gaussians to model occupancy while reducing computational overhead, but they remain constrained by insufficient multi-view spatial interaction and limited multi-frame temporal consistency. To overcome these issues, in this paper, we propose a novel Spatial-Temporal Gaussian Splatting (ST-GS) framework to enhance both spatial and temporal modeling in existing Gaussian-based pipelines. Specifically, we develop a guidance-informed spatial aggregation strategy within a dual-mode attention mechanism to strengthen spatial interaction in Gaussian representations. Furthermore, we introduce a geometry-aware temporal fusion scheme that effectively leverages historical context to improve temporal continuity in scene completion. Extensive experiments on the large-scale nuScenes occupancy prediction benchmark showcase that our proposed approach not only achieves state-of-the-art performance but also delivers markedly better temporal consistency compared to existing Gaussian-based methods.

View on arXiv
Comments on this paper