ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.16942
39
0

Prototype-Based Pseudo-Label Denoising for Source-Free Domain Adaptation in Remote Sensing Semantic Segmentation

21 September 2025
Bin Wang
Fei Deng
Zeyu Chen
Zhicheng Yu
Y. Liu
ArXiv (abs)PDFHTMLGithub (1★)
Main:3 Pages
2 Figures
Bibliography:2 Pages
1 Tables
Abstract

Source-Free Domain Adaptation (SFDA) enables domain adaptation for semantic segmentation of Remote Sensing Images (RSIs) using only a well-trained source model and unlabeled target domain data. However, the lack of ground-truth labels in the target domain often leads to the generation of noisy pseudo-labels. Such noise impedes the effective mitigation of domain shift (DS). To address this challenge, we propose ProSFDA, a prototype-guided SFDA framework. It employs prototype-weighted pseudo-labels to facilitate reliable self-training (ST) under pseudo-labels noise. We, in addition, introduce a prototype-contrast strategy that encourages the aggregation of features belonging to the same class, enabling the model to learn discriminative target domain representations without relying on ground-truth supervision. Extensive experiments show that our approach substantially outperforms existing methods.

View on arXiv
Comments on this paper