ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.16955
73
1

Quantum Adaptive Self-Attention for Financial Rebalancing: An Empirical Study on Automated Market Makers in Decentralized Finance

21 September 2025
Ahmad Albarqawi
Aidan Hung-Wen Tsai
ArXiv (abs)PDFHTML
Main:3 Pages
1 Figures
Bibliography:2 Pages
Abstract

We formulate automated market maker (AMM) \emph{rebalancing} as a binary detection problem and study a hybrid quantum--classical self-attention block, \textbf{Quantum Adaptive Self-Attention (QASA)}. QASA constructs quantum queries/keys/values via variational quantum circuits (VQCs) and applies standard softmax attention over Pauli-ZZZ expectation vectors, yielding a drop-in attention module for financial time-series decision making. Using daily data for \textbf{BTCUSDC} over \textbf{Jan-2024--Jan-2025} with a 70/15/15 time-series split, we compare QASA against classical ensembles, a transformer, and pure quantum baselines under Return, Sharpe, and Max Drawdown. The \textbf{QASA-Sequence} variant attains the \emph{best single-model risk-adjusted performance} (\textbf{13.99\%} return; \textbf{Sharpe 1.76}), while hybrid models average \textbf{11.2\%} return (vs.\ 9.8\% classical; 4.4\% pure quantum), indicating a favorable performance--stability--cost trade-off.

View on arXiv
Comments on this paper