ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.17065
64
0

CardiacCLIP: Video-based CLIP Adaptation for LVEF Prediction in a Few-shot Manner

International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2025
21 September 2025
Yao Du
Jiarong Guo
Xiaomeng Li
ArXiv (abs)PDFHTMLGithub (2★)
Main:8 Pages
1 Figures
Bibliography:3 Pages
8 Tables
Abstract

Echocardiography is a vital non-invasive modality for cardiac assessment, with left ventricular ejection fraction (LVEF) serving as a key indicator of heart function. Existing LVEF estimation methods depend on large-scale annotated video datasets, which are costly and limit adaptability across various clinical settings. Recent vision-language models for echocardiography, such as EchoCLIP, apply image-to-text pretraining but fail to capture crucial temporal dynamics and localized cardiac structures essential for accurate diagnosis. To address these challenges, we propose CardiacCLIP, a video-based framework that enhances LVEF prediction through attention-based frame aggregation and multi-resolution input scaling. Specifically, we introduce MFL (Multi Frame Learning), a novel attention-based mechanism for selectively fusing informative frames, and EchoZoom, a multi-scale feature extraction strategy that refines spatial representations of cardiac structures. As a novel adaptation of CLIP models for few-shot echocardiogram video analysis, our approach significantly improves diagnostic accuracy, reducing MAE by 2.07 on the EchoNet-Dynamic dataset under 1-shot setting. The code is available atthis https URL.

View on arXiv
Comments on this paper